IOPscience

Home Search Collections Journals About Contact us My IOPscience

Phase relations and physical properties of $Li_{2r}Mg_{1-r}Cu_{2-r}O_{3-r+x}$

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 1989 J. Phys.: Condens. Matter 1 611 (http://iopscience.iop.org/0953-8984/1/3/012)

View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 171.66.16.90 The article was downloaded on 10/05/2010 at 17:00

Please note that terms and conditions apply.

Phase relations and physical properties of $Li_{2r}Mg_{1-r}Cu_{2-r}O_{3-r+x}$

J Hauck[†], K Bickmann[†], B Bischof[†], C Freiburg[‡], D Henkel[†], U Köbler[†], K Mika[†], W Reichert[‡], E M Würtz[†], S Ipta[§] and H Altenburg[§]

† Institut für Festkörperforschung, Kernforschungsanlage, D-5170 Jülich, Federal Republic of Germany

‡ ZCH, Kernforschungsanlage, D-5170 Jülich, Federal Republic of Germany

§ FH Münster, Chemieingenieurwesen, D-4430 Steinfurt, Federal Republic of Germany

Received 10 May 1988

Abstract. Li₂CuO₂ and MgCu₂O₃, isomorphous to superconducting TiO, form solid solutions Li₂Mg_{1-r}Cu_{2-r}O_{3-r+x} with orthorhombic symmetry at $0 \le r \le 0.25$ and $0.90 \le r \le 1$ and three tetragonal phases α , β and γ at r = 0.5 with phase transitions at about 400 and about 800 °C. The O and the Li-Mg sublattices disorder at the α -to- β - and the β -to- γ -phase transitions, respectively, in tetragonal phases with lattice constants a = 399.3 pm, c = 883.1 pm (γ) and a = 572.1 pm, c = 1239.5 pm (α). The resistivity of samples is decreased at various *r*-values with semiconducting behaviour. The magnetic moment at Cu atoms is $1.3\mu_{\rm B}$ -1.5 $\mu_{\rm B}$ per Cu atom.

1. Introduction

The superconducting copper oxides $La_{2-r}Sr_rCuO_{4-x}$, $Ba_2YCu_3O_{6.5+x}$ and also the new $(Ca, Sr)_{3}Bi_{2}Cu_{2}O_{8+x}$ can be considered as interstitial alloys MZ_v of Z = O atoms at octahedral sites of a BCC derivative M lattice, where $M \equiv La_{2-}, Sr, Cu$, (MoSi₂ alloy structure), Ba_2YCu_3 or $(Ca, Sr)_3Bi_2Cu_2$ [1]. The O coordination of Cu atoms varies from octahedral to fivefold, fourfold or twofold. The present Cu oxides $Li_2CuO_2\Box$ [2] and MgCu₂O₃ [3] can also be considered as MZ_{ν} interstitial alloys, Z at octahedral sites but with a FCC M = Li_2Cu or MgCu₂ lattice with MoPt₂ alloy structure [1]. Both oxides are isomorphous to $TiO \equiv Ti_2 \Box O_2 \Box$ with vacancies \Box in the M and Z sublattices. The Cu atoms of MgCu₂O₃ and Li atoms of Li₂CuO₂ \square are on Ti positions of the Ti₂ \square O₂ \square structure [1]. TiO is superconducting below $T_c = 2.3 \text{ K}$ [4], while brown-red Li₂CuO₂ and grey MgCu₂O₃ are non-metallic. The solid solution, $Li_{2r}Mg_{1-r}Cu_{2-r}O_{3-r+x}$ $(0 \le r \le 1)$ of Li₂CuO₂ and MgCu₂O₃ is similar for example to the La_{2-r}Sr_rCuO_{4-r/2+x} solid solution [5], where conductivity can be increased by substitution with low-valent M atoms, divalent Sr for trivalent La or monovalent Li for divalent Mg. The x =0 reference O content 3 - r and 4 - r/2 is defined for formally divalent Cu. The $Ba_2YCu_3O_{6.5+x}$ system had shown that x can be positive and negative for formally trivalent and monovalent Cu, respectively [6].

2. Experimental details

Li₂O (obtained from LiOH at 700 °C and 10^{-3} bar), CuO and MgO were mixed in different ratios, sintered at 700–1100 °C in corundum or MgO crucibles. The oxygen partial pressure p_{O_2} could be varied from 0.01 to 1 bar by mixing O₂ and Ar with a gasmixing pump at a constant flow rate.

The phases of $\text{Li}_2\text{CuO}_2\text{-MgCu}_2\text{O}_3$ solid solution were characterised by x-ray diffraction (the Bragg-Brentano or Guinier method), differential thermal analysis (DTA), thermogravimetric analysis (TGA), optical microscopy and scanning electron microscopy, resistivity (qualitatively with an ohmmeter and quantitatively with the four-point method at 10–300 K) and susceptibility measurements (with a Faraday balance at 4– 300 K). The absolute O content was determined by the difference in weight after H₂ reduction for 10 h at 600 °C to a Li₂O-MgO-Cu mixture. Li₂CuO₂ impurities can be dissolved in aqueous ammonia to give a blue colour while the other phases, except Li₂O, dissolve only in acids.

3. Results

Li₂CuO₂-MgCu₂O₃ or Li₂O-MgO-CuO mixtures could be equilibrated to MgCu₂O₃-Li₂CuO₂ solid solutions after reaction for 10–20 h at about 1000 °C. The reaction of MgO and CuO is still very sluggish at these temperatures, although some of the Li₂O is volatile and samples with a high Li₂CuO₂ content are molten. The reaction of Li₂O-MgO-CuO mixtures at decreased temperatures or shorter annealing times yielded Li₂CuO₂-CuO-MgO reaction products because of favourable kinetics for Li₂CuO₂ formation. At 1000 °C, MgCu₂O₃-Li₂CuO₂ forms a solid solution Li₂rMg₁-rCu₂-rO₃-r+x at $0 \le r \le 0.25$ (samples A), $0.90 \le r \le 1$ (samples B) and three modifications α , β and at $0.5 \le r \le 0.56$ (samples C).

The solid solution samples A at $0 \le r \le 0.25$ with a MgCu₂O₃ structure have a maximum extension at about 1000 °C. At this temperature the $r \simeq 0.25$ phase forms a eutectic melt with the r = 0.5 phase. The melting point increases to about 1120 °C for samples with low r. The a and b lattice constants of MgCu₂O₃ [3]—a = 400 pm, b = 319 pm and c = 935 pm—decrease by about 2% at increased r = 0.25 (b and c are chosen to be as in the Li₂CuO₂ structure [2]).

Samples with r > 0.56 are molten at 1000 °C. Black samples (B) of Li₂CuO₂ solid solutions are obtained by cooling the melt after annealing for about 15 h at 1000 °C, whereas mixtures of Li₂CuO₂ with unreacted MgO-CuO are formed at short annealing times or decreased temperatures. The *a* and *b* lattice constants of Li₂CuO₂ [2]—*a* = 366.2 pm, *b* = 286.3 pm and *c* = 939.6 pm—increase by about 1% for the maximum solution of MgCu₂O₃.

Samples C are three tetragonal modifications α , β and γ obtained at $0.5 \le r \le 0.56$ with phase transformations at about 400 °C and about 800 °C, depending on the oxygen partial pressure (figure 1). The γ -modification melts congruently at 1064 °C. It can be investigated at room temperature after quenching in liquid nitrogen. The phase transition to β -phase with an enthalpy $\Delta H_{\beta\gamma}$ of transformation of 253 ± 10 J g⁻¹ on heating is reversible, e.g. at a decrease of 50–100 °C in the transition temperatures for a 5 °C min⁻¹ cooling process. This phase transition is associated with the ordering of Li and Mg atoms as will be shown from an analysis of different x-ray patterns.

Figure 1. α -to- β -to- γ -phase transitions of Li₈Mg₄Cu₁₂O_{20+x} for different percentages of O₂ in O₂-Ar gas mixtures at 1 bar.

Figure 2. Schematic phase diagram of temperature against O content *x* of pseudo-binary oxide MO_x ($M \equiv Li_8Mg_4Cu_{12}O_{20}$) at different oxygen partial pressures (---).

The α -to- β -phase transition at about 400 °C seems to be related to the ordering of O atoms. The DTA experiments with varied oxygen partial pressure p_{O_2} on consecutive heating and cooling cycles show peaks only on heating with a change $\Delta H_{\alpha\beta}$ in enthalpy of 4–48 J g⁻¹, increasing at increased p_{O_2} . No peak was observed while heating in pure Ar. The peak, however, recovered at the appropriate temperature (figure 1) and increased to the usual magnitude after several cycles at increased p_{O_2} . This suggests the absence of the phase transition for low O content, as outlined in figure 2. The phase relations for low O contents are similar to those for tetragonal Ba₂GdCu₃O₆, which does not transform to the orthorhombic phase [6].

The phase transitions of the present system are first order and can be studied by DTA and TGA experiments. The free enthalpy of the ordering process for the α -to- β -phase transitions increases with increasing O content. The TGA shows a step-like decrease in O content in the two-phase regions, which can be explained by phase relations outlined in figure 2. The O content decreases at both phase transitions on heating. The β -to- γ phase transition temperature increases even more markedly with increasing p_{O_2} (figure 1) and increasing O content (figure 2) than the α -to- β -phase transition temperature does. The ordering of the Li-Mg sublattice at the β -to- γ -phase transition seems to be important for occupation of O vacancies. The TGA experiments at $p_{O_2} = 1$ bar show a slightly increased O content in the melt, which can be explained by the phase relations in figure 2. The γ -phase of composition Li₈Mg₄Cu₁₂O₁₆ with x = -4 decomposes to $4\text{Li}_2\text{CuO}_2 + 4\text{Cu}_2\text{O} + 4\text{MgO}$ on inappropriate cooling, where kinetics are too slow to increase the O content. Fast quenching in liquid nitrogen yields the γ -phase powder pattern, very slow cooling (3 °C min⁻¹) yields the α -phase, while cooling in air (after removing the quartz tube from the furnace) produces a mixture of α - and γ -phases and decomposition products. These experiments show that the lower limit of single-phase γ and β should be shifted to increased x at decreased temperatures (figure 2).

Figure 3. X-ray powder pattern (Co K α_1 radiation) for new tetragonal α - and γ -phases of Li₈Mg₄Cu₁₂O_{20-x}.

The x-ray powder patterns of α - and β -phases are very similar because of the weak scattering of O atoms. The pattern of the γ -phase is different (figure 3). The strong 111, 200 and 220 'NaCl reflections' of pseudo-cubic MZ_v lattice are split differently for $\alpha - \beta$ and γ -phase samples. Tetragonal unit cells were obtained for both patterns: a = 399.3 pm and c = 883.1 pm for the γ -phase; a = 572.1 pm and c = 1239.5 pm for the α -phase (after repeated annealing at $p_{O_2} = 1$ bar). The lattice parameters of the α -phase are slightly increased to a = 572.8 pm and c = 1239.8 pm on increased cooling rate and therefore decreased O content. The unit cell of the γ -phase is about twice the MZ_v NaCl unit cell with eight M- and eight Z-atom positions, while the unit cell of the α -phase with $a \simeq$ $\sqrt{2} a$ (NaCl) and $c \simeq 3a$ (NaCl) contains 24 M- and 24 Z-atom positions. The composition of M and Z can be obtained from the r-values of single-phase $Li_{2r}Mg_{1-r}Cu_{2-r}O_{3-r+r}$: $Li_{2.67}Mg_{1.33}Cu_4O_{6.67+x}$ at r = 0.5 and $Li_3Mg_{1.17}Cu_{3.83}O_{6.5+x}$ at r = 0.56 for the γ -phase; $Li_8Mg_4Cu_{12}O_{20+x}$ (r = 0.5) and $Li_9Mg_{3.5}Cu_{11.5}O_{19.5+x}$ (r = 0.56) for the α -phase. The r = 0.5 composition agrees with one fold, two fold, four fold, eightfold and 16-fold positions at tetragonal symmetry. At r = 0.56 about 4% of the Cu atoms should be substituted by Mg atoms. However, the observation of identical phase transition temperatures (figure 1) for samples with nominally different r-values suggests negligible Mg substitution and therefore a constant r = 0.5 composition of the α -, β - and γ -phases. The increased Li content at r = 0.5-0.56 is probably volatile during the annealing process. The oxygen content x = -3 (γ -phase) and x = 2 (α -phase) correspond to two monovalent and two divalent Cu atoms in γ -Li_{2.67}Mg_{1.33}Cu⁺₂Cu²⁺O_{5.7}, and four trivalent and eight divalent Cu atoms in α -Li₈Mg₄Cu²⁺₈Cu³⁺₄O₂₂. All Cu atoms are divalent at x = 0(figure 2).

Figure 4 shows the ordering of Li, Mg, Cu and O atoms in agreement with the observed tetragonal symmetry. Other configurations are possible—in particular for Li and O atoms in the α - and β -phase, which is difficult to determine by x-ray diffraction. The suggested ordering of Li atoms and O vacancies \Box is similar to that in Li₂CuO₂ \Box [2]. The O vacancies \Box in Li₂CuO₂ \Box are in the sequence \Box -Cu- \Box -Cu in the *a* axis direction (figure 4), so that all Cu atoms have planar fourfold O coordination. In α - $Li_8Mg_4Cu_{12}O_{22}\Box_2$ with a sequence O-Cu-O-Cu in the c axis direction, eight Cu²⁺ atoms have octahedral and four Cu³⁺ atoms have fourfold planar O coordination. The Cu⁺ atoms in the y-phase and β -phase at low x have twofold coordinations in the suggested structure (figure 4). The relative distance between Cu atoms decreases from c/2a = 1.11in the γ -phase to $c\sqrt{2}/3a = 1.02$ in the α -phase-about 0.90 in MgCu₂O₃ and about 0.87 in Li₂CuO₂. In α -, β - and γ -phases and Li₂CuO₂ the Li atoms, which are close to the O vacancy positions, have smaller coordination numbers. The fourfold coordination in Li₂CuO₂ is tetrahedral [2]. The unit-cell content of the γ -phase (Li_{2.67}Mg_{1.33}Cu₄O_{6.67+x/3} with $x \approx -3$) suggests a disorder of Li–Mg and part of the O sublattice. 71% of the total O positions are occupied in the γ -phase, 83% in the α - and β -phases at x = 0, and 92% in the α -phase at x = 2. The x = 0 composition is similar to that for 83% occupation of the $Z \equiv C$ positions in ordered or disordered $V_6C_5\Box$ or $Nb_6C_5\Box$ [1]. The C atoms of the disordered phase have short-range order, whereas the ordered phases have some disorder. This might be similar in the present system.

Figure 4. Projection of Cu, Mg, Li atoms and O vacancy \Box positions in Li₄Cu₂O₄ \Box_2 – Mg₂Cu₄O₆ neglecting distortions [2, 3] and α -, β - and γ -Li₈Mg₄Cu₁₂O_{20+x} unit cells on an NaCl lattice grid with a(NaCl) = 2. The underlined numbers show the periodicity in height.

Grey MgCu₂O₃ and reddish brown Li₂CuO₂ are insulating. The electrical resistivity decreases in the black samples of solid solutions A, B and C. All samples investigated so far show increased conductivity but are still semiconducting (figure 5). Magnetic measurements of the susceptibility were performed at 4–300 K for the α -phase. The data can be fitted to Curie–Weiss laws with $\mu_{eff} = 1.3\mu_B - 1.5\mu_B$ per Cu atom and θ in the range from -31 to -40 K. A very small contribution from Pauli paramagnetism and the observed magnetic moment indicate localisation of the electrons in the d⁹ configuration

Figure 5. Conductivity of $Li_{2r}Mg_{1-r}Cu_{2-r}O_{3-r+x}$ samples with different *r*-values (shown as curve labels).

of divalent Cu. The magnetic moments do not order above 4 K. Li_2CuO_2 and $MgCu_2O_3$ have $\mu_{eff} = 1.9$ and $>0.8 \mu_B$ per Cu atom and order at the Néel temperatures 10 and 70 ± 0.5 K, respectively.

4. Conclusion

Li₂CuO₂ \Box and MgCu₂O₃ form solid solutions with the formula Li₂,Mg₁₋,Cu₂₋,O_{3-r+x} at 0 ≤ r ≤ 0.25 (samples A), 0.90 ≤ r ≤ 1 (samples B) and three modifications α , β and γ at r = 0.5 (samples C). There are miscibility gaps at 0.25 ≤ r ≤ 0.50 and 0.50 ≤ r ≤ 0.90. The metal sublattice can be considered to be FCC derivative structures: M = MgCu₂ for MgCu₂O₃ solid solution (samples A) and M = Li₂Cu for Li₂CuO₂ solid solution (samples B) have an orthorhombic MoPt₂ alloy structure, and M = (Li₂Mg)Cu₃ for α -, β - and γ -phases (samples C) have a CuAu alloy structure (figure 4). The Li₂Mg sublattice is disordered in the γ -phase with tetragonal unit-cell lattice constants a = 399.3 pm and c = 883.1 pm and ordered in the tetragonal β -phase with a= 572.1 pm ($\approx \sqrt{2}a$ (NaCl)) and c = 1239.5 pm. The O sublattice orders below about 400 °C in the α -phase.

Li₂/Mg_{1-r}Cu_{2-r}O_{3-r+x} samples A and B can be compared with the solid solution La_{2-r}Sr_rCuO_{4-r/2+x}, where the symmetry of the phases is maintained in certain ranges, e.g. the orthorhombic phase for $0 \le r \le 0.16$ and the tetragonal phase for $0.16 \le r \le 0.5$ [5]. Samples A and B in the present system have different O contents. MgCu₂O₃ solid solution samples consist of CuO₆ octahedra, which are linked by apices and edges, whereas Cu atoms of Li₂CuO₂ \Box have a planar coordination of four O neighbours forming CuO₂ chains in the *b* axis direction (figure 4). The chains are linked by edges, whereas CuO₄ groups of Cu(1) atoms in Ba₂YCu₃O₇ are linked at apices.

The α -, β - and γ -phases with r = 0.5 (samples C) can be compared with the Ba₂YCu₃O_{6.5+x} system. The ratio of Li: Mg: Cu = 2:1:3 is constant, while the O content x in Li₈Mg₄Cu₁₂O_{20+x} can vary between -4 and 2 as outlined in figure 2. The α -to- β -phase transition at about 400 °C is probably absent at low O contents, as in tetragonal Ba₂GdCu₃O₆ which does not transform to the orthorhombic phase [6]. The Li-Mg sublattice becomes disordered at the β -to- γ -phase transition at about 800 °C; this might

be due to the small size and high mobility of Li atoms. The lattice constants c = 2a(NaCl)(γ -phase) and c = 3a(NaCl) (α -phase) are related to alternating Cu⁺-Cu²⁺ layers (γ -phase with x = -3) and Cu³⁺-Cu²⁺-Cu²⁺ layers (α -phase with x = 2).

Despite the large variety of phases in the $Li_{2r}Mg_{1-r}Cu_{2-r}O_{3-r+x}$ system and some analogies to superconducting $Ba_2YCu_3O_{6.5+x}$ or $La_{2-r}Sr_rCuO_{4-r/2+x}$, the physics of the present system seem to be quite simple. All samples investigated so far are semiconducting. Measurements of magnetic properties show that the d electrons of divalent Cu atoms are localised in d⁹ configuration without magnetic ordering above 4 K.

A physical property concerning the mechanical strength, namely the deterioration of bulk material after repeated loading and unloading with O seems to be new in oxide systems but is well known for interstitial alloys, e.g. FeTiH_x[7]. The variation in volume of about 3.7% at the β -to- γ -phase transition (figures 1 and 2) causes internal strain. Large grains of the starting material for DTA and TGA runs at different p_{O_2} -values (figures 1 and 2) deteriorated to a fine powder after several cycles of O loading and unloading.

References

- [1] Hauck J, Henkel D and Mika K 1988 J. Magn. Magn. Mater. 76 + 77 at press
- [2] Hoppe R and Riek H 1970 Z. Anorg. Allg. Chem. 379 157
- [3] Drenkhahn H and Müller-Buschbaum H 1975 Z. Anorg. Allg. Chem. 418 116
- [4] Doyle N J, Hulm J K, Jones C K, Miller R C and Taylor A 1968 Phys. Lett. 26A 604
- [5] Nguyen N, Studer F and Raveau B 1983 J. Phys. Chem. Solids 44 389
- [6] Hauck J, Bickmann K and Zucht F 1987 Z. Phys. B 67 299
- [7] Wenzl H 1982 Int. Metall. Rev. 27 140