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Abstract. Li,CuO,O and MgCu203, isomorphous to superconducting TiO, form solid solu- 
tions LiZ,Mgl-,CuZ-r03-r+x with orthorhombic symmetry at 0 S r 6 0.25 and 0.90 d r s 1 
and three tetragonal phases (U, P and y at r = 0.5 with phase transitions at about 400 and 
about 800°C. The 0 and the Li-Mg sublattices disorder at the a-to$- and the P-to-y- 
phase transitions, respectively, in tetragonal phases with lattice constants a = 399.3 pm, c = 
883.1 pm (y) and a = 572.1 pm, c = 1239.5 pm ((U). The resistivity of samples is decreased 
at various r-values with semiconducting behaviour. The magnetic moment at Cu atoms is 
1.3pB-1.5pB per Cu atom. 

1. Introduction 

The superconducting copper oxides La2-rSrrCu04-,, Ba2YC~306 .5+x  and also the new 
(Ca, Sr )3Bi2C~208+x can be considered as interstitial alloys MZ, of Z = 0 atoms at 
octahedral sites of a BCC derivative M lattice, where M La2-,SrrCu, (MoSi2 alloy 
structure), Ba2YCu3 or (Ca, Sr )3Bi2C~2 [ l ] .  The 0 coordination of Cu atoms varies 
from octahedral to fivefold, fourfold or twofold. The present Cu oxides Li2Cu020 [2] 
and MgCu203 [3] can also be considered as MZ, interstitial alloys, Z at octahedral sites 
but with a FCC M = Li2Cu or MgCu, lattice with MoPt, alloy structure [l]. Both oxides 
are isomorphous to Ti0 T i 2 0 0 2 U  with vacancies 0 in the M and Z sublattices. The 
Cu atoms of MgCu203 and Li atoms of Li2Cu020 are on Ti positions of the Ti2CIO20 
structure [l] .  Ti0 is superconducting below T, = 2.3 K [4], while brown-red Li2Cu02 
and grey MgCu203 are non-metallic. The solid solution, Li2,Mgl-rCu2-r03-r+x 
(0 s r < 1) of Li2Cu02 and MgCu203 is similar for example to the Laz-rSrrCu04-r,2+x 
solid solution [5], where conductivity can be increased by substitution with low-valent 
M atoms, divalent Sr for trivalent La or monovalent Li for divalent Mg. The x = 
0 reference 0 content 3 - r and 4 - r/2 is defined for formally divalent Cu. The 
Ba2YC~306 .5+x  system had shown that x can be positive and negative for formally 
trivalent and monovalent Cu, respectively [6]. 
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2. Experimental details 

Li20  (obtained from LiOH at 700 "C and bar), CuO and MgO were mixed in 
different ratios, sintered at 700-1100 "C in corundum or MgO crucibles. The oxygen 
partial pressure p o z  could be varied from 0.01 to 1 bar by mixing O2 and Ar with a gas- 
mixing pump at a constant flow rate. 

The phases of Li,Cu02-MgCu203 solid solution were characterised by x-ray dif- 
fraction (the Bragg-Brentano or Guinier method), differential thermal analysis (DTA), 
thermogravimetric analysis (TGA) , optical microscopy and scanning electron micro- 
scopy, resistivity (qualitatively with an ohmmeter and quantitatively with the four-point 
method at 10-300 K) and susceptibility measurements (with a Faraday balance at 4- 
300 K). The absolute 0 content was determined by the difference in weight after H2 
reduction for 10 h at 600 "C to a Li20-MgO-Cu mixture. Li2Cu02 impurities can be 
dissolved in aqueous ammonia to give a blue colour while the other phases, except Li,O, 
dissolve only in acids. 

3. Results 

LizCu02-MgCu203 or Li20-MgO-CuO mixtures could be equilibrated to MgCu203- 
Li2Cu02 solid solutions after reaction for 10-20 h at about 1000 "C. The reaction of MgO 
and CuO is still very sluggish at these temperatures, although some of the Li20 is volatile 
and samples with a high Li2Cu0, content are molten. The reaction of Li,O-MgO-CuO 
mixtures at decreased temperatures or shorter annealing times yielded Li,CuO,- 
CuO-MgO reaction products because of favourable kinetics for Li2Cu02 formation. 
At 1000 "C, MgCu203-Li2Cu02 forms a solid solution Li2rMgl-,Cu2-r03-r+x at 
0 s r i 0.25 (samples A),  0.90 < r 4 1 (samples B) and three modifications a,  0 and at 
0.5 s r i 0.56 (samples C). 

The solid solution samples A at 0 S r i 0.25 with a MgCu203 structure have a 
maximum extension at about 1000 "C. At this temperature the r = 0.25 phase forms a 
eutectic melt with the r = 0.5 phase. The melting point increases to about 1120 "C for 
samples with low r. The a and b lattice constants of MgCu203 [3]-a = 400 pm, b = 
319 pm and c = 935 pm-decrease by about 2% at increased r = 0.25 (6 and c are chosen 
to be as in the Li2Cu02 structure [ 2 ] ) .  

Samples with r > 0.56 are molten at 1000 "C. Black samples (B) of Li,CuO, solid 
solutions are obtained by cooling the melt after annealing for about 15 h at 1000 "C, 
whereas mixtures of LizCu02 with unreacted MgO-CuO are formed at short annealing 
times or decreased temperatures. The a and b lattice constants of Li2Cu02 [2]-a = 
366.2 pm, b = 286.3 pm and c = 939.6 pm-increase by about 1% for the maximum 
solution of MgCu,03. 

Samples C are three tetragonal modifications a, /3 and y obtained at 0.5 d r < 0.56 
with phase transformations at about 400 "C and about 800 "C, depending on the oxygen 
partial pressure (figure 1). The y-modification melts congruently at 1064 "C. It can be 
investigated at room temperature after quenching in liquid nitrogen. The phase tran- 
sition to 0-phase with an enthalpy A H p y  of transformation of 253 If: 10 J g-' on heating is 
reversible, e.g. at a decrease of 5&100 "C in the transition temperatures for a 5 "C min-' 
cooling process. This phase transition is associated with the ordering of Li and Mg atoms 
as will be shown from an analysis of different x-ray patterns. 
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Figure 1. a-to-/3-to-y-phase transitions of 
L ~ , M ~ , C U , , O ~ , + , ~  for different percentages of 0, 
in 0,-Ar gas mixtures at 1 bar. 

Formal va[ence of Cu atoms 

Figure 2. Schematic phase diagram of tem- 
perature against 0 content x of pseudo-binary 
oxide MO, (M LiRMg4Cu,Z020) at different 
oxygen partial pressures (---). 

The a-to-/!I-phase transition at about 400 "C seems to be related to the ordering of 0 
atoms. The DTA experiments with varied oxygen partial pressure p o z  on consecutive 
heating and cooling cycles show peaks only on heating with a change AHmp in enthalpy 
of 4-48 J g-', increasing at increased p o 2 .  No peak was observed while heating in pure 
Ar. The peak, however, recovered at the appropriate temperature (figure 1) and 
increased to the usual magnitude after several cycles at increased p o 2 .  This suggests the 
absence of the phase transition for low 0 content, as outlined in figure 2. The phase 
relations for low 0 contents are similar to those for tetragonal Ba2GdCu306, which does 
not transform to the orthorhombic phase [6]. 

The phase transitions of the present system are first order and can be studied by DTA 
and TGA experiments. The free enthalpy of the ordering process for the a-to-/!I-phase 
transitions increases with increasing 0 content. The TGA shows a step-like decrease in 
0 content in the two-phase regions, which can be explained by phase relations outlined 
in figure 2. The 0 content decreases at both phase transitions on heating. The P-to-y- 
phase transition temperature increases even more markedly with increasing p o 2  (figure 
1) and increasing 0 content (figure 2) than the a-to-/!I-phase transition temperature 
does. The ordering of the Li-Mg sublattice at the /!I-to-y-phase transition seems to be 
important for occupation of 0 vacancies. The TGA experiments at p o 2  = 1 bar show a 
slightly increased 0 content in the melt, which can be explained by the phase relations 
in figure 2. The y-phase of composition Li8Mg4CuI2Ol6 with x = -4 decomposes to 
4Li2Cu02 + 4 c u 2 0  + 4Mg0 on inappropriate cooling, where kinetics are too slow to 



614 J Hauck et a1 

increase the 0 content. Fast quenching in liquid nitrogen yields the y-phase powder 
pattern, very slow cooling (3 "C min-') yields the a-phase, while cooling in air (after 
removing the quartz tube from the furnace) produces a mixture of a- and y-phases and 
decomposition products. These experiments show that the lower limit of single-phase y 
and /3 should be shifted to increased x at decreased temperatures (figure 2). 

ze ldegl 

Figure 3. X-ray powder pattern (CO Ka, radiation) for new tetragonal a- and y-phases of 
Li&lg,Cu120~o_ ~. 

The x-ray powder patterns of a- and 9-phases are very similar because of the weak 
scattering of 0 atoms. The pattern of the y-phase is different (figure 3). The strong 111, 
200 and 220 'NaCl reflections' of pseudo-cubic MZy lattice are split differently for a+?- 
and y-phasesamples. Tetragonalunit cellswereobtainedforbothpatterns: a = 399.3 pm 
and c = 883.1 pm for the y-phase; a = 572.1 pm and c = 1239.5 pm for the a-phase (after 
repeated annealing at p o 2  = 1 bar). The lattice parameters of the a-phase are slightly 
increased to a = 572.8 pm and c = 1239.8 pm on increased cooling rate and therefore 
decreased 0 content. The unit cell of the y-phase is about twice the MZ, NaCl unit cell 
with eight M- and eight Z-atom positions, while the unit cell of the a-phase with a = 
V? a(NaC1) andc = 3a(NaC1) contains24 M- and24 Z-atompositions. Thecomposition 
of M and Z can be obtained from the r-values of single-phase Li2rMgl-rCu2-r03-r+x: 
Li2.6,Mg,,33C~406,6,+x at r = 0.5 and Li3Mg1.17C~3.8306.j+x at r = 0.56 for the y-phase; 
Li8Mg4C~12020+x ( r  = 0.5) and Li9Mg3,5C~11.j019.5+x ( r  = 0.56) for the a-phase. The 
r = 0.5 composition agrees with onefold, twofold, fourfold, eightfold and 16-fold posi- 
tions at tetragonal symmetry. At r = 0.56 about 4% of the Cu atoms should be substituted 
by Mg atoms. However, the observation of identical phase transition temperatures 
(figure 1) for samples with nominally different r-values suggests negligible Mg sub- 
stitution and therefore a constant r = 0.5 composition of the a-, /3- and y-phases. The 
increased Li content at r = 0.5-0.56 is probably volatile during the annealing process. 
The oxygen content x = -3 (y-phase) and x = 2 (&-phase) correspond to two mono- 
valent and two divalent Cu atoms in y-Li2,67Mg1,33C~: Cu;' 0 j , 7 ,  and four trivalent and 
eight divalent Cu atoms in a-Li,Mg4Cui+Cu$+022. All Cu atoms are divalent at x = 0 
(figure 2). 
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Figure 4 shows the ordering of Li, Mg, Cu and 0 atoms in agreement with the 
observed tetragonal symmetry. Other configurations are possible-in particular for Li 
and 0 atoms in the a- and @-phase, which is difficult to determine by x-ray diffraction. 
The suggested ordering of Li atoms and 0 vacancies 0 is similar to that in Li,CuO,O 
[2]. The 0 vacancies 0 in Li,Cu020 are in the sequence 0-Cu-0-Cu in the a axis 
direction (figure 4), so that all Cu atoms have planar fourfold 0 coordination. In a- 
LisMg4C~1202202 with a sequence 0-Cu-0-Cu in the c axis direction, eight Cu2+ atoms 
have octahedral and four Cu3+ atoms have fourfold planar 0 coordination. The Cu+ 
atoms in the y-phase and @-phase at low x have twofold coordinations in the suggested 
structure (figure 4). The relative distance between Cu atoms decreases from c/2a = 1.11 
in the y-phase to cd/2/3a = 1.02 in the a-phase-about 0.90 in MgCu203 and about 
0.87 in Li2Cu02. In a - ,  @- and y-phases and Li,Cu02 the Li atoms, which are close to 
the 0 vacancy positions, have smaller coordination numbers. The fourfold coordination 
inLi,Cu02istetrahedral[2]. Theunit-cellcontentofthe y-phase(Li,,6,Mgl,33Cu406,67+x,3 
with x = -3) suggests a disorder of Li-Mg and part of the 0 sublattice. 71% of the 
total 0 positions are occupied in the y-phase, 83% in the a- and @-phases at x = 0, and 
92% in the a-phase at x = 2. Thex = 0 composition is similar to that for 83% occupation 
of the Z C positions in ordered or disordered v6Cj0 or Nb6C50 [l]. The C atoms of 
the disordered phase have short-range order, whereas the ordered phases have some 
disorder. This might be similar in the present system. 

4 o i n  0 2 0  in  a 
ix.01 ix: 2 )  

a =  

4 L i . M g  in 4 M g  i n  a,p 8 L i  in a , p  

Figure 4. Projection of Cu,  Mg, Li atoms and 0 vacancy 0 positions in Li4Cu20402- 
Mg2Cu40,  neglecting distortions [2, 31 and a-, p- and y-Li8Mg4C~,20201r  unit cells on an 
NaCl lattice grid with a(NaC1) = 2. The underlined numbers show the periodicity in height. 

Grey MgCu203 and reddish brown Li2Cu02 are insulating. The electrical resistivity 
decreases in the black samples of solid solutions A ,  B and C. All samples investigated 
so far show increased conductivity but are still semiconducting (figure 5 ) .  Magnetic 
measurements of the susceptibility were performed at 4-300 K for the a-phase. The data 
can be fitted to Curie-Weiss laws with peff = 1 .3yB-1 .5pB per Cu atom and 8 in the range 
from -31 to -40K. A very small contribution from Pauli paramagnetism and the 
observed magnetic moment indicate localisation of the electrons in the d9 configuration 
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Figure 5.  Conductivity of Li,,Mg,+,Cu,-,03-,,, samples with different r-values (shown as 
curve labels). 

of divalent Cu. The magnetic moments do not order above 4 K. Li,CuO, and MgCu203 
have peff = 1.9 and >0.8 pug per Cu atom and order at the NCel temperatures 10 and 
70 t 0.5 K, respectively. 

4. Conclusion 

Li,Cu020 and MgCu203 form solid solutions with the formula Li,,Mgl-rCu2-r03-r+ 'i 
at 0 s r S 0.25 (samples A), 0.90 S r 6 1 (samples B) and three modifications a,  Band y 
at r = 0.5 (samples C). There are miscibility gaps at 0.25 i r 6 0.50 and 0.50 6 Y i 0.90. 
The metal sublattice can be considered to be FCC derivative structures: M = MgCu, for 
MgCu203 solid solution (samples A)  and M Li2Cu for Li,CuO,solid solution (samples 
B) have an orthorhombic MoPt, alloy structure, and M = (Li2Mg)Cu3 for a-, p- and y- 
phases (samples C) have a CuAu alloy structure (figure 4). The LizMg sublattice is 
disordered in the y-phase with tetragonal unit-cell lattice constants a = 399.3 pm and 
c = 883.1 pm and ordered in the tetragonal p-phase with a= 572.1 pm (=V%(NaCl)) 
and c = 1239.5 pm. The 0 sublattice orders below about 400 "C in the a-phase. 

Li2rMgl-,Cu2-r03-r+x samples A and B can be compared with the solid solution 
La2-rSr,Cu04-r,2+x, where the symmetry of the phases is maintained in certain ranges, 
e.g. the orthorhombic phase for 0 6 r i 0.16 and the tetragonal phase for 0.16 i Y s 0.5 
[ 5 ] .  Samples A and B in the present system have different 0 contents. MgCu203 solid 
solution samples consist of CuOh octahedra, which are linked by apices and edges, 
whereas Cu atoms of Li2Cu0,0 have a planar coordination of four 0 neighbours 
forming CuO, chains in the b axis direction (figure 4). The chains are linked by edges, 
whereas CuO, groups of Cu(1) atoms in Ba2YCu3O7 are linked at apices. 

The a+, p- and y-phases with r = 0.5 (samples C) can be compared with the 
Ba2YCu306 j+xsystern. TheratioofLi:Mg:Cu = 2 :  1 :3isconstant, whiletheocontent 
x in Li8Mg4Cu12020+, can vary between -4 and 2 as outlined in figure 2. The a-t0-B- 
phase transition at about 400 "C is probably absent at low 0 contents, as in tetragonal 
Ba2GdCu306 which does not transform to the orthorhombic phase [6]. The Li-Mg 
sublattice becomes disordered at the @-to- y-phase transition at about 800 "C; this might 
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be due to the small size and high mobility of Li atoms. The lattice constants c = Za(NaC1) 
(y-phase) and c = 3a(NaC1) (a-phase) are related to alternating Cu+-Cu2+ layers (y-  
phase with x = -3) and Cu3+-Cu2+-Cu2+ layers (a-phase with x = 2). 

Despite the large variety of phases in the Li2rMgl-,Cu2-,03-r+, system and some 
analogies to superconducting Ba2YC~306.5  +, or La2-rSrrC~04-r,2+x, the physics of the 
present system seem to be quite simple. All samples investigated so far are 
semiconducting. Measurements of magnetic properties show that the d electrons of 
divalent Cu atoms are localised in d9 configuration without magnetic ordering above 
4 K. 

A physical property concerning the mechanical strength, namely the deterioration 
of bulk material after repeated loading and unloading with 0 seems to be new in oxide 
systems but is well known for interstitial alloys, e.g. FeTiH, [7]. The variation in volume 
of about 3.7% at the 0-to-y-phase transition (figures 1 and 2) causes internal strain. 
Large grains of the starting material for DTA and TGA runs at differentp,, -values (figures 
1 and 2) deteriorated to a fine powder after several cycles of 0 loading and unloading. 
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